Abstract
Copper-catalyzed Mannich reactions of terminal alkynes and secondary
amines with aqueous formaldehyde can be accelerated by the use of
a catalytic amount of an imidazole ligand carrying a long alkyl
chain. The alkyl chain shows an efficient steric effect and helps
the reaction. This imidazole ligand is efficient for various substrates,
including even bulky alkynes.
Key words
alkyl chain - imidazole - steric effect - copper - Mannich reaction
References and Notes
<A NAME="RU09310ST-1A">1a </A>
Israelachvili JN.
Mitchell DJ.
Ninham BW.
J.
Chem. Soc., Faraday Trans. 2
1976,
72:
1525
<A NAME="RU09310ST-1B">1b </A>
Holbrey JD.
Seddon KR.
J.
Chem. Soc., Dalton Trans.
1999,
2133
<A NAME="RU09310ST-2">2 </A>
Asano K.
Matsubara S.
Org. Lett.
2010,
12:
4988
<A NAME="RU09310ST-3">3 </A>
Malcolmson SJ.
Meek SJ.
Sattely ES.
Schrock RR.
Hoveyda AH.
Nature (London)
2008,
456:
933
<A NAME="RU09310ST-4A">4a </A>
Asano K.
Matsubara S.
Org.
Lett.
2009,
11:
1757
<A NAME="RU09310ST-4B">4b </A>
Asano K.
Matsubara S.
Synlett
2009,
35
<A NAME="RU09310ST-4C">4c </A>
Asano K.
Matsubara S.
Synthesis
2009,
3219
<A NAME="RU09310ST-4D">4d </A>
Güntensperger M.
Zuberbühler AD.
Helv.
Chim. Acta
1977,
60:
2584
<A NAME="RU09310ST-4E">4e </A>
Asano K.
Matsubara S.
Heterocycles
2010,
80:
989
Copper(I)-imidazole systems
have been well studied and shown to form a stable complex with an
affinity for π-acceptor compounds, see:
<A NAME="RU09310ST-5A">5a </A>
Kitagawa S.
Munakata M.
Bull. Chem. Soc. Jpn.
1986,
59:
2743
<A NAME="RU09310ST-5B">5b </A>
Kitagawa S.
Munakata M.
Bull. Chem. Soc. Jpn.
1986,
59:
2751
<A NAME="RU09310ST-5C">5c </A>
Gaykema WPJ.
Hol WGJ.
Vereijken JM.
Soeter NM.
Bak HJ.
Beintema JJ.
Nature (London)
1984,
309:
23
<A NAME="RU09310ST-5D">5d </A>
Linzen B.
Soeter NM.
Riggs AF.
Schneider H.-J.
Schartau W.
Moore MD.
Yokota E.
Behrens PQ.
Nakashima H.
Takagi T.
Nemoto T.
Vereijken JM.
Bak HJ.
Beintema JJ.
Volbeda A.
Gaykema WPJ.
Hol WGJ.
Science
1985,
229:
519
<A NAME="RU09310ST-6A">6a </A>
Hayashi Y.
Aratake S.
Okano T.
Takahashi J.
Sumiya T.
Shoji M.
Angew.
Chem. Int. Ed.
2006,
45:
5527
<A NAME="RU09310ST-6B">6b </A>
Mase N.
Nakai Y.
Ohara N.
Yoda H.
Takabe K.
Tanaka F.
Barbas CF.
J.
Am. Chem. Soc.
2006,
128:
734
<A NAME="RU09310ST-6C">6c </A>
Manabe K.
Sun X.-M.
Kobayashi S.
J.
Am. Chem. Soc.
2001,
123:
10101
<A NAME="RU09310ST-7A">7a </A>
Mannich C.
Chang FT.
Ber.
Dtsch. Chem. Ges.
1933,
66:
418
<A NAME="RU09310ST-7B">7b </A>
Tramontini M.
Synthesis
1973,
703
<A NAME="RU09310ST-7C">7c </A>
Tramontini M.
Angiolini L.
Tetrahedron
1990,
46:
1791
<A NAME="RU09310ST-8A">8a </A>
Karlén B.
Lindeke B.
Lindgren S.
Svensson K.-G.
Dahlbom R.
Jenden DJ.
Giering JE.
J. Med. Chem.
1970,
13:
651
<A NAME="RU09310ST-8B">8b </A>
Simon DZ.
Salvador RL.
Champagne G.
J. Med. Chem.
1970,
13:
1249
<A NAME="RU09310ST-8C">8c </A>
Adams TC.
Dupont AC.
Carter JP.
Kachur JF.
Guzewska ME.
Rzeszotarski WJ.
Farmer SG.
Noronha-Blob L.
Kaiser C.
J. Med. Chem.
1991,
34:
1585
<A NAME="RU09310ST-8D">8d </A>
Nilsson BM.
Vargas HM.
Ringdahl B.
Hacksell U.
J. Med.
Chem.
1992,
35:
285
<A NAME="RU09310ST-8E">8e </A>
Sanders KB.
Thomas AJ.
Pavia MR.
Davis RE.
Coughenour LL.
Myers SL.
Fisher S.
Moos WH.
Bioorg. Med. Chem. Lett.
1992,
2:
803
<A NAME="RU09310ST-8F">8f </A>
Musso DL.
Clarke MJ.
Kelley JL.
Boswell GE.
Chen G.
Org. Biomol. Chem.
2003,
1:
498
<A NAME="RU09310ST-9A">9a </A>
Hattori K.
Miyata M.
Yamamoto H.
J. Am. Chem. Soc.
1993,
115:
1151
<A NAME="RU09310ST-9B">9b </A>
Boys ML.
Tetrahedron Lett.
1998,
39:
3449
<A NAME="RU09310ST-9C">9c </A>
Craig JC.
Ekwuribe NN.
Tetrahedron
Lett.
1980,
21:
2587
<A NAME="RU09310ST-9D">9d </A>
Nakamura H.
Kamakura T.
Ishikura M.
Biellman J.-F.
J. Am. Chem. Soc.
2004,
126:
5958
<A NAME="RU09310ST-9E">9e </A>
Nakamura H.
Ishikura M.
Sugiishi T.
Kamakura T.
Biellman J.-F.
Org.
Biomol. Chem.
2008,
6:
1471
<A NAME="RU09310ST-9F">9f </A>
Tabei J.
Nomura R.
Masuda T.
Macromolecules
2002,
35:
5405
<A NAME="RU09310ST-9G">9g </A>
Gao G.
Sanda F.
Masuda T.
Macromolecules
2003,
36:
3932
<A NAME="RU09310ST-9H">9h </A>
Crabbé P.
Fillion H.
André D.
Luche J.-L.
J. Chem.
Soc., Chem. Commun.
1979,
859
<A NAME="RU09310ST-9I">9i </A>
Kuang J.
Ma S.
J. Org. Chem.
2009,
74:
1763
<A NAME="RU09310ST-9J">9j </A>
Kuang J.
Ma S.
J. Am. Chem. Soc.
2010,
132:
1786
<A NAME="RU09310ST-9K">9k </A>
Ohno H.
Ohta Y.
Oishi S.
Fujii N.
Angew. Chem. Int. Ed.
2007,
46:
2295
<A NAME="RU09310ST-9L">9l </A>
Suzuki Y.
Ohta Y.
Oishi S.
Fujii N.
Ohno H.
J. Org. Chem.
2009,
74:
4246
<A NAME="RU09310ST-9M">9m </A>
Ohta Y.
Kubota Y.
Watabe T.
Chiba H.
Oishi S.
Fujii N.
Ohno H.
J. Org. Chem.
2009,
74:
6299
<A NAME="RU09310ST-10A">10a </A>
Kabalka GW.
Wang L.
Pagni RM.
Synlett
2001,
676
<A NAME="RU09310ST-10B">10b </A>
Sharifi A.
Farhangian H.
Mohsenzadeh F.
Naimi-Jamal MR.
Monatsh. Chem.
2002,
133:
199
<A NAME="RU09310ST-10C">10c </A>
Bieber LW.
da Silva MF.
Tetrahedron
Lett.
2004,
45:
8281
<A NAME="RU09310ST-10D">10d </A>
Kabalka GW.
Zhou L.-L.
Wang L.
Pagni RM.
Tetrahedron
2006,
62:
857
<A NAME="RU09310ST-10E">10e </A>
Sharifi A.
Mirzaei M.
Naimi-Jamal MR.
J.
Chem. Res.
2007,
129
<A NAME="RU09310ST-11A">11a </A>
Wang M.
Li P.
Wang L.
Eur. J. Org. Chem.
2008,
2255
<A NAME="RU09310ST-11B">11b </A>
Li P.
Wang L.
Tetrahedron
2007,
63:
5455
<A NAME="RU09310ST-12">12 </A>
Stephens RD.
Castro CE.
J. Org. Chem.
1963,
28:
3313
<A NAME="RU09310ST-13A">13a </A>
Asano Y.
Hara K.
Ito H.
Sawamura M.
Org. Lett.
2007,
9:
3901
<A NAME="RU09310ST-13B">13b </A>
Asano Y.
Ito H.
Hara K.
Sawamura M.
Organometallics
2008,
27:
5984
<A NAME="RU09310ST-14A">14a </A>
Li C.-J.
Chan T.-H. In Organic Reactions in Aqueous Media
John
Wiley and Sons;
New York:
1997.
<A NAME="RU09310ST-14B">14b </A>
Li C.-J.
Acc.
Chem. Res.
2010,
43:
581
<A NAME="RU09310ST-14C">14c </A>
Chen L.
Li C.-J.
Adv. Synth. Catal.
2006,
348:
1459
<A NAME="RU09310ST-15A">15a </A>
Kobayashi S.
Chem. Lett.
1991,
2187
<A NAME="RU09310ST-15B">15b </A>
Kobayashi S.
Hachiya I.
J. Org. Chem.
1994,
59:
3590
<A NAME="RU09310ST-16">16 </A>
Similar investigations corresponding
to Table
[³ ]
were
also performed with 4c and 4d ,
which carry alkyl chains of other lengths; also in those cases,
a drastic acceleration such as occurred in the case of 4e was not observed.
<A NAME="RU09310ST-17">17 </A>
Dureen MA.
Stephan DW.
J. Am. Chem. Soc.
2009,
131:
8396
<A NAME="RU09310ST-18">18 </A>
General Procedure
for Mannich Reactions of Terminal Alkynes and Secondary Amines with
Formaldehyde
To a 5 mL vial were added sequentially
terminal alkyne 1 (1.0 mmol), secondary
amine 2 (1.0 mmol), formaldehyde (37% aq
solution, 1.2 mmol), 1-hexadecylimidazole (4e , 0.01
mmol), and CuI (0.005 mmol, 1.0 mg). The mixture was stirred in
an oil bath kept at 25 ˚C for 1.5 h. The mixture was
diluted with EtOAc, dried (anhyd Na2 SO4 ),
and concentrated in vacuo. Purification by flash column chromatography
(silica gel, hexane-EtOAc) gave the corresponding propargylamine 3 .
1-(3-Phenylprop-2-yn-1-yl)piperidine
(3aa)
CAS [2568-57-2]. Orange oil. ¹ H
NMR (500 MHz, CDCl3 ): δ = 7.43 (m,
2 H), 7.30-7.27 (m, 3 H), 3.48 (s, 2 H), 2.57 (br s, 4
H), 1.64 (tt, J = 5.5,
6.0 Hz, 4 H), 1.45 (br s, 2 H). ¹³ C NMR
(125,7 MHz, CDCl3 ): δ = 131.7, 128.2,
127.9, 123.3, 85.1, 84.9, 53.5, 48.5, 26.0, 23.9.
<A NAME="RU09310ST-19">19 </A>
The reactions of dibutylamine and
dicyclohexylamine could be performed to afford the corresponding
products quantitatively even without any ligand.